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Including spatial structure and stochastic noise invalidates the classical Lotka-Volterra picture of stable
regular population cycles emerging in models for predator-prey interactions. Growth-limiting terms for the
prey induce a continuous extinction threshold for the predator population whose critical properties are in the
directed percolation universality class. We discuss the robustness of this scenario by considering an ecologi-
cally inspired stochastic lattice predator-prey model variant where the predation process includes next-nearest-
neighbor interactions. We find that the corresponding stochastic model reproduces the above scenario in
dimensions 1�d�4, in contrast with the mean-field theory, which predicts a first-order phase transition.
However, the mean-field features are recovered upon allowing for nearest-neighbor particle exchange pro-
cesses, provided these are sufficiently fast.
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In 1920 and 1926, respectively, Lotka �1� and Volterra �2�
devised a simple coupled set of differential equations to de-
scribe an autocatalytic reaction model and the statistics of
fish catches in the Adriatic. The Lotka-Volterra model �LVM�
has since become one of the central paradigms for the emer-
gence of periodic oscillations in nonlinear systems with com-
peting constituents �3�, and features prominently in text-
books, from undergraduate-level population biology �4� to
ecology �5,6� and mathematical biology �7� as, for instance,
it can also be formulated as a host-pathogen model �8�. Yet it
has often been severely criticized as being biologically unre-
alistic and mathematically unstable �4,7,9�. Recent investiga-
tions of zero-dimensional �10� and spatial stochastic models
�8,11–15� have shown that this criticism definitely pertains to
the original deterministic rate equations; however, it turns
out that the stochastic, or lattice, two-species predator-prey
model variants display quite robust properties, rather insen-
sitive to the details of the underlying microscopic processes
�for a recent overview, see Ref. �16��. In particular, the lattice
predator-prey models �LPPM� display the following features:
�i� The population densities typically display erratic �rather
than regular periodic� oscillations, with amplitudes that van-
ish in the thermodynamic limit �13�, caused by persistent and
recurrent predator-prey activity waves that form complex
spatiotemporal structures �17�; �ii� when the prey population
growth is limited �finite carrying capacity, local site restric-
tions�, there exists an extinction threshold for the predator
population �14,15�; this constitutes a nonequilibrium active-
to-absorbing-state phase transition with the critical expo-
nents of directed percolation �DP� �18,19�. Also, for host-
pathogen models with two types of pathogens, the invasion
of the system by one pathogen �the other becoming extinct�
through oscillatory behavior was reported using mean-field
�MF� and pair-approximation treatments �8�.

As noted by various authors �13–15,17�, a more realistic
description of the predator-prey interaction should include
the possibility for the agents to move. In fact, in real ecosys-
tems prey tend to evade the predators, while the predators
aim to pursue the prey. One approach to account for the
motion of the agents is to consider diffusion �nearest-
neighbor �NN� hopping� of predators and/or prey, which,
however, does not really affect the global properties of the
LPPM �14�. Another approach, to be considered, is to as-
sume a NN exchange process �among any two agents: preda-
tors, prey, and empty sites� in the following referred to as
“stirring.” It has to be noted that both diffusion and stirring
processes are not taken into account at the �MF� rate equa-
tion level. In addition, some recent investigations have in-
cluded long-range processes in two-dimensional LPPM, re-
porting quite different results on the existence �15� or
absence �14� of “self-sustained oscillations” �in the thermo-
dynamic limit�. We also note that for spatial host-pathogen
models �with NN interactions�, the rate equations include
algebraic nonlinear terms of power 2d+1 in dimensions d
�8�. Thus, an understanding of the joint effect of long-range
interactions and of the agents’ motion is desirable and rel-
evant from ecological and statistical physics points of view.

In this Rapid Communication, we aim to shed further
light on the remarkable robustness of the LPPM scenario. To
this end, we study an ecologically inspired stochastic lattice
predator-prey model with a next-nearest-neighbor �NNN� in-
teraction �NNN-LPPM�, both in the presence and absence of
a NN exchange process �stirring�. We will demonstrate a
subtle interplay between the correlations generated by the
NNN interaction and the stirring process. As a result, there is
a regime where the NNN-LPPM phase diagram, indeed, fol-
lows the LPPM scenario outlined above, with a continuous
predator extinction transition in the DP universality class. On
the other hand, we shall also see under which unexpected
conditions a first-order phase transition can occur as a con-
sequence of the competition between the short-range ex-*Electronic address: mauro.mobilia@physik.lmu.de
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change and the NNN predator-prey interactions.
To begin, we outline the main properties of the determin-

istic LVM and then of the corresponding LPPM �3,4,7�. Con-
sider two chemical species subject to the reactions A→�
�decay rate ��0�, B+ � →B+B �branching rate ��0�, and
A+B→A+A �predation rate ��0�. Neglecting any spatial
variations and fluctuations of the concentrations a�x , t� and
b�x , t� of “predators” A and “prey” B, one obtains the clas-

sical LVM rate equations: ȧ�t�=�a�t�b�t�−�a�t� and ḃ�t�
=�b�t�−�a�t�b�t�. These deterministic equations have as sta-
tionary states �a* ,b*�= �0,0� �extinction�, �0, � � �predators
extinct, prey proliferation�, and �ac

* ,bc
*�= �� /� ,� /�� �species

coexistence�. The unstable fixed points �0,0� and �0, � � con-
stitute absorbing states of the dynamics. The existence of a
conserved first integral of the deterministic rate equation,
K�t�=��a�t�+b�t��−� ln a�t�−� ln b�t�=constant, implies
oscillatory kinetics around �ac

* ,bc
*�.

Since this center singularity is unstable with respect to
introducing model modifications �5,7�, the LVM rate equa-
tions are often rendered more “realistic” by introducing
growth-limiting terms �4,7�. For the LVM, this amounts to

replacing the rate equation for species B with ḃ�t�=�b�t��1
−	−1b�t��−�a�t�b�t� �	 is the prey “carrying capacity”;
growth-limiting terms for the predators do not induce any
qualitative changes�. The three fixed points are now shifted
to �a* ,b*�= �0,0� �extinction�, �0,	� �predators extinct, sys-
tem saturated with prey�, and �ar

* ,br
*� with ar

*= �1
−� /�	�� /�, which is in the physical region �0�ar

*�1� if
��� /	, and br

*=� /�. Linear stability analysis reveals �0,0�
to be a saddle point, whereas �0,	� is stable �node� if �
�� /	 �when ar

*�0�, and a saddle point �stable in the b
direction� otherwise. When ��� /	, the coexistence state
�ar

* ,br
*� is stable; it is either a node or a focus, associated

with spiral trajectories in the �a ,b� phase plane �7�. Thus, at
the rate equations level, �c=� /	 is the critical predation rate.
The global stability of �ar

* ,br
*� is established by the existence

of a Lyapunov function L�a ,b�=��ar
* ln a�t�+br

* ln b�t�
−a�t�−b�t�� �7�. Many of these features re-emerge in sto-
chastic LPPM with site restriction. Indeed, Monte Carlo
simulations �11,13� yield that as in mean-field theory, the
coexistence fixed point is either a node or a focus. In the
latter case, amazingly rich spatiotemporal patterns of persis-
tent predator-prey “pursuit and evasion” waves �7,9� emerge,
inducing erratic correlated population density oscillations. In
finite systems, these quasiperiodic fluctuations appear on a
global scale, but the amplitude of the density oscillations
decreases with system size �13�. A completely different pic-
ture emerges when the active fixed point is a node just above
the predators’ extinction threshold �c: Instead of the intricate
front patterns, small predator “clouds” effectively diffuse in a
sea of prey �16�. If the value of � is reduced further �keeping
the other rates fixed�, at the critical value �c the system
reaches the absorbing state. This active-to-absorbing phase
transition is found to be in the DP universality class �19�; this
is also true for many LPPM variants �13–15�. These results
can be understood from the master equation: For the above
reactions one may derive an equivalent field-theory action
�20�, which near �c can be mapped onto Reggeon field

theory �16�, known to describe the asymptotic DP scaling
laws �19–21�.

In most LPPM �see, e.g., Refs. �14,13��, the “predation”
process subsumes NN interaction and the effects on both the
prey and the predators in a single reaction. More realistically,
one should split this into two processes, and thereby intro-
duce two independent time scales. This leads to the following
stochastic reaction scheme that incorporates a three-site
NNN process: �a� A predator reproduces in the vicinity of a
prey �favorable environment� according to the triplet reac-
tion A+ � +B→A+A+B �with rate 
 /z�z−1�; z=2d is the
coordination number of a d-dimensional hypercube�; �b� a
predator consumes a neighboring prey �rate � /z�, leaving an
empty site, according to the binary process A+B→ � +A;
�c� we shall also allow for an efficient mixing process,
through particle exchange with rate D /z �stirring� between
two neighboring sites regardless of their content �12�. Be-
sides these reactions, we still consider the processes B+ �
→B+B �rate � /z� and A→� �rate ��. Assuming full site
restriction, i.e., allowing at most one particle per site, the MF
rate equations now read

ȧ�t� = 
a�t�b�t��1 − a�t� − b�t�� − �a�t� , �1�

ḃ�t� = �b�t��1 − a�t� − b�t�� − �a�t�b�t� . �2�

These equations can be obtained from the master equation of
our NNN-LPPM upon factorizing the three-point correlators
as products of the corresponding densities a ,b. In contrast
with the LVM, the nonlinear term in Eq. �1� is cubic �NNN
interaction�; the site restriction appears through the growth-
limiting factors 1−a−b. Note that the mixing parameter D
does not enter the rate equations �but would appear in the
equations for the three-point and higher correlation func-
tions�. Equations �1� and �2� admit four fixed points, pro-
vided 
�
c=4���+�� /�. In addition to the previous ab-
sorbing states, �a* ,b*�= �0,0� and �0,1�, the two new
nontrivial steady states �k=1,2� are given by

ak
* = ��/2�� + ����1 − �− 1�k�1 − 
c/
� �3�

and bk
*= 1

2 �1+ �−1�k�1−
c /
�. These active fixed points
�a1,2

* ,b1,2
* � correspond to two distinct predator-prey coexist-

ence phases. From linear stability analysis, we infer that the
absorbing state �0,1� is always a stable node: The associated
Jacobian eigenvalues read �+�0,1�=−� �with eigenvector
v+= ���−�� / ��+�� ,1�� and �−�0,1�=−� �eigenvector v−

= �0,1��. On the other hand, �0,0� is an unstable saddle
point, with eigenvalues �+�0,0�=� �with unstable eigendi-
rection v+= �0,1�� and �−�0,1�=−� �stable eigendirection
v−= �1,0��. Without loss of generality, we just discuss the
stability of the active fixed points �3� when �=�=�=1.
In this case, 
c=8 and the eigenvalues of the Jacobian, re-
spectively, read �k=1,2�: �±�ak

* ,bk
*�=− 1

4 �3+ �−1�k�1−8/
�
± 1

4
�22�−1�k�1−8/
+10−8/
. Thus, the active fixed point

�a1
* ,b1

*� is stable, Re��±�a1
* ,b1

*���0, while �a2
* ,b2

*� is a saddle
point. More generally, for fixed � ,� ,� there exists a value

s�
c such that �a1

* ,b1
*� is a stable node if 
c�
�
s, and a

stable focus, i.e., Im��±�a1
* ,b1

*���0, if 
�
s. When �=�
=�=1, 
s= �29+11�7� /6�9.683 88. Typical phase portraits
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as predicted by Eqs. �1� and �2� are illustrated in Fig. 1. The
eigenvectors associated with �a2

* ,b2
*� give the slope of

the separatrices in its vicinity: 4��
−�
−8� / ��
−�
−8

±�10
+22�
�
−8�−8�. It follows from this discussion that,
at the MF level, the introduction of a triplet interaction
changes the behavior of the system dramatically: For 
�
c,
the system can reach the absorbing state full of prey or, al-
ternatively, a phase where the prey population, with station-
ary density b*�1/2, coexists with the predators. Hence, the
rate equations predict the possibility of a first-order phase
transition.

Motivated by these predictions, quite different from those
of other LPPM, we have studied the properties of our NNN-
LPPM through Monte Carlo simulations on periodic hyper-
cubic lattices. We have first considered the case of slow �D
�0� and fast stirring and noted the emergence of quite dif-
ferent behavior. In fact, for no �or slow� stirring, instead of a
discontinuous phase transition, we have observed a continu-
ous active-to-absorbing phase transition as for the LPPM in
dimensions d=2, 3 and even d=4, see Fig. 2�a�. �Of course,
in dimensions d�3 the model is biologically irrelevant:
these cases have only been considered to assess the validity
of the MF theory.� To ascertain the properties of the NNN-
LPPM, we have employed the dynamical Monte Carlo tech-

nique �18�. Near the extinction threshold, one expects power-
law behavior for the survival probability P�t�	 t−
� and the
number of active sites N�t�	 t. By averaging over 3�106

independent runs, performed on a 512�512 lattice, each
with a duration of 105 Monte Carlo steps, for fixed rates �
=�=2�=2 and D=0, we have estimated the critical point to
be at 
c�11.72 �the MF prediction is 
c=8�, and measured

��0.451 and �0.230, very close to the established two-
dimensional DP exponents �18�. As illustrated in Fig. 3, we
have also determined the order parameter critical exponent
defined via a�t→ � �	�
−
c�� as ��0.584. We have
checked that the exponent values are consistent with the DP
universality class for several choices of the rates � ,� ,�.
Qualitatively, the features of the NNN-LPPM remain similar
in d=3 and 4 �Fig. 2�a��: We observe continuous phase tran-
sitions �for different values of 
c� with ��0.81 for d=3 and
��1.0 for d=4 �upper critical dimension of DP� in agree-
ment with DP values �18�.

In the absence of stirring, the phase diagram changes
qualitatively when d�5: Even for D=0, one then observes
the first-order phase transition predicted by the MF approxi-
mation. The situation turns out to be completely different
when the stirring is sufficiently fast, as illustrated in Fig.
2�b�: A first-order phase transition occurs in low dimensions
as well, and, depending on the initial condition with respect
to the separatrices �see Fig. 1�b��, the flows in the phase
portrait end either at the absorbing fixed point �0,1�, or reach
a stationary state where both predators and prey coexist �with
b*�1/2�. This scenario, in the presence of sufficiently fast
stirring, therefore recovers the MF behavior, at least qualita-
tively. It is quite remarkable that the rate equations �1� and
�2� describe the NNN-LPPM already for mere NN exchanges
at finite rates; one would rather expect the MF regime to
emerge in the limit of infinitely fast exchange processes in-
volving the swap of all particles �not restricted to NN part-
ners� �12�.

As illustrated in Fig. 4, the intriguing properties of the
NNN-LPPM with NN exchange process can be summarized
as follow: �i� For vanishing mixing �D small compared to the
other rates�, in dimensions 1�d�4 the system undergoes an
active-to-absorbing state transition, which belongs again to
the DP universality class; only for d�5, a first-order phase

FIG. 1. Flows in the phase plane from integrating Eqs. �1� and
�2� for �=�=�=1, with 
=4 �a� and 
=9 �b�. �a�: �0,1� is the only
stable fixed point �node�. �b�: There is an additional stable �node�
active fixed point �a1

* ,b1
*�= �1/3 ,1 /3�; while �0,0� and �a2

* ,b2
*�

= �1/6 ,2 /3� are unstable. The slopes of the separatrices at �a2
* ,b2

*�
are �1.126 �dashed line� and �−1.568 �see text�.

FIG. 2. �Color online� Average stationary prey density b* vs 

for �=�=2�=2. �a�: DP-like transitions on 2562, 503, and 204

lattices when D=0. �b�: Effect of the stirring on a 5122 lattice. For
D=0, there is a continuous transition �center curve, black�, while
for D=10 �sufficient stirring� two stable branches emerge, and there
is a first-order transition; the top �red� branch corresponds to preda-
tor extinction, and the bottom �blue� branch is associated with a
coexistence phase.

FIG. 3. �Color online� Average stationary density of predators in
the absence of stirring on a 512�512 lattice with �=�=2�=2 and
D=0: Existence of a DP-like phase transition at 
c�11.72 with
exponent ��0.584 �see inset�.
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transition appears. Stochastic fluctuations clearly have a
drastic effect here, invalidating the MF picture in dimensions
d�4. �ii� When one allows for random short-range particle
mixing �D�0�, the dynamics and the phase portrait flows
change dramatically �Fig. 4�b��. �iii� When the exchange pro-
cesses become sufficiently fast �typically, when D�
�, a
new fixed point associated with a coexistence phase is avail-
able �this holds even in d=1�, as demonstrated in Fig. 4�c�,
and the system undergoes a first-order phase transition as
predicted by the MF theory. As expected, when there is
“fast” stirring �D much larger than the other rates� the MF
predictions become very accurate. We have also checked that
the NNN-LPPM stable active fixed point is, in agreement
with the MF analysis and generic properties of the other
LPPM �13,14�, either a node or a focus. When it is a focus,
the coexistence phase is again characterized by population
oscillations originating in moving activity fronts but, as the
system is more mixed, these “rings” appear less prominent
than in the LPPM with NN interactions �16�.

In this paper, we have first outlined the main properties of
the LPPM with NN interactions: namely, the existence of
erratic oscillations and complex patterns deep in the coexist-
ence phase and a directed percolation type phase transition.
We have then further tested this scenario by considering a

perhaps more realistic model variant with NNN interaction.
Upon introducing a short-range stirring mechanism together
with this longer-range interaction, an intriguing interplay
emerges: When the NN exchange process is “slow,” the
NNN reaction induces subtle correlations that completely in-
validate the MF treatment and the system still undergoes a
DP-type phase transition �for 1�d�4�. In this regime, the
generic LPPM scenario is thus fully confirmed. However,
when the value of the mixing rate D is raised, the simple NN
exchange process “washes out” the NNN correlations and the
system reproduces the MF behavior, displaying a first-order
phase transition. This is to be viewed in contrast with the
standard LPPM, for which even the fast diffusion of preda-
tors and prey generally does not qualitatively affect its prop-
erties �14�.
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rate D=0,2 ,5. �See text�.
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